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1

1 Wetting your feet

Most technical education emphasizes exact answers. If you are a physi-

cist, you solve for the energy levels of the hydrogen atom to six dec-

imal places. If you are a chemist, you measure reaction rates and

concentrations to two or three decimal places. In this book, you learn

complementary skills. You learn that an approximate answer is not

merely good enough; it’s often more useful than an exact answer.

When you approach an unfamiliar problem, you want to learn first

the main ideas and the important principles, because these ideas and

principles structure your understanding of the problem. It is easier to

refine this understanding than to create the refined analysis in one

step.

The adjective in the title of the book, order of magnitude,

reflects our emphasis on approximation. An order of magnitude is a

factor of 10. To be ‘within an order of magnitude’, or to estimate a

quantity ‘to order of magnitude’, means that your estimate is roughly

within a factor of 10 on either side. This chapter introduces the art

of determining such approximations.

Writer’s block is broken by writing; estimator’s block is broken by

estimating. So we begin our study of approximation using everyday

examples, such as estimating budgets or annual production of diapers.

These warmups flex your estimation muscles, which may have lain

dormant through many years of traditional education.

Everyday estimations provide practice for our later problems, and

also provide a method to sanity check information that you see. Sup-

pose that a newspaper article says that the annual cost of health

care in the United States will soon surpass $1 trillion. Whenever you

read any such claim, you should automatically think: Does this num-

ber seem reasonable? Is it far too small, or far too large? You need

methods for such estimations, methods that we develop in several

examples. We dedicate the first example to physicists who need em-

ployment outside of physics.

1.1 Armored cars

How much money is there in a fully loaded Brinks armored car?

The amount of money depends on the size of the car, the denom-

ination of the bills, the volume of each bill, the amount of air be-

tween the bills, and many other factors. The question, at first glance,

seems vague. One important skill that you will learn from this text,
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1. Wetting your feet 2

by practice and example, is what assumptions to make. Because we

do not need an exact answer, any reasonable set of assumptions will

do. Getting started is more important than dotting every i; make an

assumption—any assumption—and begin. You can correct the gross

lies after you have got a feeling for the problem, and have learned

which assumptions are most critical. If you keep silent, rather than

tell a gross lie, you never discover anything.

Let’s begin with our equality conventions, in ascending order of

precision. We use ∝ for proportionalities, where the units on the left

and right sides of the ∝ do not match; for example, Newton’s second

law could read F ∝ m. We use ∼ for dimensionally correct relations

(the units do match), which are often accurate to, say, a factor of 5

in either direction. An example is

kinetic energy ∼ Mv2. (1.1)

Like the ∝ sign, the ∼ sign indicates that we’ve left out a constant;

with ∼, the constant is dimensionless. We use ≈ to emphasize that the

relation is accurate to, say, 20 or 30 percent. Sometimes, ∼ relations

are also that accurate; the context will make the distinction.

Now we return to the armored car. How much money does it

contain? Before you try a systematic method, take a guess. Make it an

educated guess if you have some knowledge (perhaps you work for an

insurance company, and you happened to write the insurance policy

that the armored-car company bought); make it an uneducated guess

if you have no knowledge. Then, after you get a more reliable estimate,

compare it to your guess: The wonderful learning machine that is your

brain magically improves your guesses for the next problem. You train

your intuition, and, as we see at the end of this example, you aid your

memory. As a pure guess, let’s say that the armored car contains

$1 million.

Now we introduce a systematic method. A general method in many

estimations is to break the problem into pieces that we can handle:

We divide and conquer. The amount of money is large by every-

day standards; the largeness suggests that we break the problem into

smaller chunks, which we can estimate more reliably. If we know the

volume V of the car, and the volume v of a us bill, then we can count

the bills inside the car by dividing the two volumes, N ∼ V/v. After

we count the bills, we can worry about the denominations (divide and

conquer again). [We do not want to say that N ≈ V/v. Our volume

estimates may be in error easily by 30 or 40 percent, or only a frac-

tion of the storage space may be occupied by bills. We do not want

to commit ourselves. We have divided the problem into two simpler

subproblems: determining the volume of the car, and determining the

volume of a bill. What is the volume of an armored car? The stor-

age space in an armored car has a funny shape, with ledges, corners,

nooks, and crannies; no simple formula would tell us the volume, even
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1. Wetting your feet 3

2 m

2 m

2 m

Figure 1.1. Interior of a Brinks ar-

mored car. The actual shape is irreg-

ular, but to order of magnitude, the

interior is a cube. A person can prob-

ably lie down or stand up with room

to spare, so we estimate the volume as

V ∼ 2 m × 2m × 2m ∼ 10m3.

1. ‘I seen my opportunities and I took

’em.’—George Washington Plunkitt, of

Tammany Hall, quoted by Riordan [2,

page 3].

if we knew the 50-odd measurements. This situation is just the sort for

which order-of-magnitude physics is designed; the problem is messy

and underspecified. So we lie skillfully: We pretend that the storage

space is a simple shape with a volume that we can find. In this case,

we pretend that it is a rectangular prism (Figure 1.1).

To estimate the volume of the prism, we divide and conquer. We

divide estimating the volume into estimating the three dimensions of

the prism. The compound structure of the formula

V ∼ length × width × height (1.2)

suggests that we divide and conquer. Probably an average-sized per-

son can lie down inside with room to spare, so each dimension is

roughly 2m, and the interior volume is

V ∼ 2m × 2m × 2m ∼ 10m3 = 107 cm3. (1.3)

In this text, 2 × 2 × 2 is almost always 10. We are already working

with crude approximations, which we signal by using ∼ in N ∼ V/v,

so we do not waste effort in keeping track of a factor of 1.25 (from

using 10 instead of 8). We converted the m3 to cm3 in anticipation of

the dollar-bill-volume calculation: We want to use units that match

the volume of a dollar bill, which is certainly much smaller than 1m3.

Now we estimate the volume of a dollar bill (the volumes of us

denominations are roughly the same). You can lay a ruler next to a

dollar bill, or you can just guess that a bill measures 2 or 3 inches by

6 inches, or 6 cm × 15 cm. To develop your feel for sizes, guess first;

then, if you feel uneasy, check your answer with a ruler. As your feel

for sizes develops, you will need to bring out the ruler less frequently.

How thick is the dollar bill? Now we apply another order-of-magnitude

technique: guerrilla warfare. We take any piece of information that

we can get.1 What’s a dollar bill? We lie skillfully and say that a

dollar bill is just ordinary paper. How thick is paper? Next to the

computer used to compose this textbook is an inkjet printer; next

to the printer is a ream of printer paper. The ream (500 sheets) is

roughly 5 cm thick, so a sheet of quality paper has thickness 10−2 cm.

Now we have the pieces to compute the volume of the bill:

v ∼ 6 cm × 15 cm × 10−2 cm ∼ 1 cm3. (1.4)

The original point of computing the volume of the armored car and

the volume of the bill was to find how many bills fit into the car:

N ∼ V/v ∼ 107 cm3/1 cm3 = 107. If the money is in $20 bills, then

the car would contain $200 million.

The bills could also be $1 or $1000 bills, or any of the intermedi-

ate sizes. We chose the intermediate size $20, because it lies nearly

halfway between $1 and $1000. You naturally object that $500, not
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1. Wetting your feet 4

$20, lies halfway between $1 and $1000. We answer that objection

shortly. First, we pause to discuss a general method of estimating:

talking to your gut. You often have to estimate quantities about

which you have only meager knowledge. You can then draw from your

vast store of implicit knowledge about the world—knowledge that you

possess but cannot easily write down. You extract this knowledge by

conversing with your gut; you ask that internal sensor concrete ques-

tions, and listen to the feelings that it returns. You already carry on

such conversations for other aspects of life. In your native language,

you have an implicit knowledge of the grammar; an incorrect sen-

tence sounds funny to you, even if you do not know the rule being

broken. Here, we have to estimate the denomination of bill carried by

the armored car (assuming that it carries mostly one denomination).

We ask ourselves, ‘How does an armored car filled with one-dollar

bills sound?’ Our gut, which knows the grammar of the world, re-

sponds, ‘It sounds a bit ridiculous. One-dollar bills are not worth so

much effort; plus, every automated teller machine dispenses $20 bills,

so a $20 bill is a more likely denomination.’ We then ask ourselves,

‘How about a truck filled with thousand-dollar bills?’ and our gut re-

sponds, ‘no, sounds way too big—never even seen a thousand-dollar

bill, probably collectors’ items, not for general circulation.’ After this

edifying dialogue, we decide to guess a value intermediate between $1

and $1000.

We interpret ‘between’ using a logarithmic scale, so we choose a

value near the geometric mean,
√

1 × 1000 ∼ 30. Interpolating on a

logarithmic scale is more appropriate and accurate than is interpo-

lating on a linear scale, because we are going to use the number in

a chain of multiplications and divisions. Here’s why. Suppose your

estimate for a quantity Q turns into this multiplication:

Q = 2 × 5 × y, (1.5)

and you still need to estimate y. Let’s say that you think that y is

roughly 12 – and in fact y is 12 – but you are unsure by a factor of 3:

a value of 4 or of 36 also seem plausible. Then your upper and lower

estimates for Q are:
Q1 = 2 × 5 × 4

Q2 = 2 × 5 × 36.
(1.6)

If you estimate Q by using the arithmetic mean of the lower and upper

estimates Q1 and Q2, then your estimate is

Q1 + Q2

2
= 2 × 5 × 4 + 36

2
= 200, (1.7)

which is much greater than the true value 2 × 5 × 12 = 120. The

estimate using the geometric mean is
√

Q1Q2 = 2 × 5 ×
√

4 × 36 = 2 × 5 × 12, (1.8)
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1. Wetting your feet 5

which is the true value.

The uncertainty in y is given as a factor (here, a factor of 3) rather

than as a difference (for example, 12±8). So this example intrinsically

favors the geometric mean, and its conclusion – that one should use

the geometric mean – is not surprising given this starting point. So

how reasonable is the starting point, that one’s uncertainty in y is

more accurately characterized by a factor than by a difference? To test

it, imagine that you are unsure whether iron is more or less dense than

rock and that an estimate, say of the earth’s mass, depends on the

ratio of densities r = ρiron/ρrock. Suppose that your knowledge of r is

as follows: ‘I don’t know which substance is denser. Perhaps they are

comparable (r = 1). However, if they are not comparable, then their

densities are probably not more than a factor of 2 different.’ In other

words, r = 1/2 and r = 2 also seem plausible. This characterization

using factors matches our intuition for densities. In contrast, using

differences does not express our intuitions. If r could range as high as

2, then as a difference r = 1±1 and r = 0 would be a reasonable value,

as reasonable as r = 2. However, to say the conclusion is to doubt it.

Your intuition rebels because it knows that r = 0 is nonsense: Iron is

dense, much denser than air or feathers!

To make the example more extreme, imagine a situation with more

uncertainty, say where your uncertainty is a factor of 10. In terms of

the density ratio, both r = 10 and r = 1/10 seem plausible. This level

of uncertainty might be appropriate when comparing substances with

which you have little experience; for example, the crust of a neutron

star with the core of a white dwarf. The expression r = 10 = 1 + 9

expresses a reasonable intuition for the upper bound. However, the

lower bound – if you use differences rather than factors – does not

express a reasonable intuition about densities for it would say that r =

1 − 9 = −8. Since densities must be positive, this result is nonsense.

This point about positive and negative is essential to this discus-

sion. The quantities that we multiply to make an estimate almost

always have a known sign. For the sake of argument, suppose that

the sign of a particular quantity is positive. If you are completely un-

certain about its value, it could range between 0 and ∞. This range

is not symmetric (where is the midpoint?), so differences do not accu-

rately characterize your uncertainty on this range. However, the log-

arithm of the quantity ranges from −∞ to ∞, which is a symmetric

range. Here, differences can accurately characterize your uncertainty.

Differences on a logarithmic scale become factors on a linear scale;

logarithms were invented because of this property: They convert mul-

tiplication into addition. So the moral of these examples is: On a

logarithmic scale, use differences to characterize uncertainty; and on

a linear scale, use factors to characterize uncertainty.

Returning to the example that prompted this discussion of arith-
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1. Wetting your feet 6

2. It is unfortunate that mass is not a

transitive verb in the way that weigh

is. Otherwise, we could write that the

truck masses 10 tons. If you have more

courage than we have, use this construc-

tion anyway, and start a useful trend.

metic and geometric means, let’s estimate the typical denomination

in the armored car, by asking our gut about nearby estimates. It is

noncommittal when asked about $10 or $100 bills; both denomina-

tions sound reasonable. It has strong feelings when we ask it about $1

bills (‘who would bother to transport them?’) or $1000 (‘never seen

one’): both seem unreasonable. The geometric mean of 10 and 100 is

roughly 30, so we can imagine an armored car filled with $30 bills.

Because US money does not come in $30 bills, we instead use a nearby

actual denomination of $20.

If the car is filled with $20 bills, it would contain $200 million,

an amount much greater than our initial guess of $1 million. Such

a large discrepancy makes us suspicious of either the guess or this

new estimate. We therefore cross-check our answer, by estimating

the monetary value in another way. By finding another method of

solution, we learn more about the domain. If our new estimate agrees

with the previous one, then we gain confidence that the first estimate

was correct; if the new estimate does not agree, it may help us to find

the error in the first estimate.

We estimated the carrying capacity using the available space. How

else could we estimate it? The armored car, besides having limited

space, cannot carry infinite mass. So we estimate the mass of the

bills, instead of their volume. What is the mass of a bill? If we knew

the density of a bill, we could determine the mass using the volume

computed in (1.4). To find the density, we use the guerrilla method.

Money is paper. What is paper? It’s wood or fabric, except for many

complex processing stages whose analysis is beyond the scope of this

book. Here, we just used another order-of-magnitude technique, punt:

When a process, such as papermaking, looks formidable, forget about

it, and hope that you’ll be okay anyway. Ignorance is bliss. It’s more

important to get an estimate; you can correct the egregiously inac-

curate assumptions later. How dense is wood? Once again, use the

guerrilla method: Wood barely floats, so its density is roughly that of

water, ρ ∼ 1 g cm−3. A bill, which has volume v ∼ 1 cm3, has mass

m ∼ 1 g. And 107 cm3 of bills would have a mass of 107 g = 10 tons.2

This cargo is large. [Metric tons are 106 g; English tons are roughly

0.9·106 g, which, for our purposes, is also 106 g.] What makes 10 tons

large? Not the number 10 being large. To see why not, consider these

extreme arguments:

In megatons, the cargo is 10−5 megatons, which is a tiny cargo

because 10−5 is a tiny number.

In grams, the cargo is 107 g, which is a gigantic cargo because 107

is a gigantic number.

You might object that these arguments are cheats, because neither

grams nor megatons is a reasonable unit in which to measure truck

2006-03-20 23:51:19 [rev 22987c8b4860]



1. Wetting your feet 7

cargo, whereas tons is a reasonable unit. This objection is correct;

when you specify a reasonable unit, you implicitly choose a standard

of comparison. The moral is this: A quantity with units—such as

tons—cannot be large intrinsically. It must be large compared to a

quantity with the same units. This argument foreshadows the topic

of dimensional analysis, which is the subject of many books (and a

lot of the rest of this book).

So we must compare 10 tons to another mass. We could compare

it to the mass of a bacterium, and we would learn that 10 tons is

relatively large; but to learn about the cargo capacity of Brinks ar-

mored cars, we should compare 10 tons to a mass related to transport.

We therefore compare it to the mass limits at railroad crossings and

on many bridges, which are typically 2 or 3 tons. Compared to this

mass, 10 tons is large. Such an armored car could not drive many

places. Perhaps 1 ton of cargo is a more reasonable estimate for the

mass, corresponding to 106 bills. We can cross-check this cargo esti-

mate using the size of the armored car’s engine (which presumably is

related to the cargo mass); the engine is roughly the same size as the

engine of a medium-sized pickup truck, which can carry 1 or 2 tons

of cargo (roughly 20 or 30 book boxes). If the money is in $20 bills,

then the car contains $20 million. Our original, pure-guess estimate

of $1 million is still much smaller than this estimate by roughly an

order of magnitude, but we have more confidence in this new esti-

mate, which lies roughly halfway between $1 million and $200 million

(we find the midpoint on a logarithmic scale). The Reuters newswire

of 18 September 1997 has a report on the largest armored car heist

in us history; the thieves took $18 million; so our estimate is accu-

rate for a well-stocked car. (Typical heists net between $1 million and

$3 million.)

We answered this first question in detail to illustrate a number of

order-of-magnitude techniques. We saw the value of lying skillfully—

approximating dollar-bill paper as ordinary paper, and ordinary paper

as wood. We saw the value of waging guerrilla warfare—using knowl-

edge that wood barely floats to estimate the density of wood. We

saw the value of cross-checking—estimating the mass and volume of

the cargo—to make sure that we have not committed a gross blun-

der. And we saw the value of divide and conquer—breaking volume

estimations into products of length, width, and thickness.

Breaking problems into factors, besides making the estimation

possible, often reduces the error in the estimate. If you guess a num-

ber of the order of 1010 in one step, you might be in error by a factor

of 10. For example, you might estimate the number of stars in our

galaxy as N ∼ 1010, but 109 or 1011 might feel equally plausible. Now

break the estimate into two pieces:

N ∼ A × B, (1.9)
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1. Wetting your feet 8

where A and B are each of order 105. Now you estimate A and B.

What is the typical error in your estimate of N? There probably is a

general rule about guessing, that the logarithm of a number is in error

by a fixed fraction. If estimates of order 1010 are often in error by a

factor of 10, which is one unit on a log-base-10 scale, then estimates

of order 105 would be in error by one-half of a unit or by a factor of 3.

In the one-shot estimate for N , its logarithm log10 N could be 9, 10,

or 11 – the three values feeling equally plausible:

log10 N 9 10 11

p
1

3

1

3

1

3
(1.10)

For A or B, each of order 105, their logarithms could be 4.5, 5, or

5.5, each value feeling equally plausible. Now see what happens when

you multiply A and B or, equivalently, when you add their logarithms:

log10 N = log10 A + log10 B

=







4.5
5

5.5






+







4.5
5

5.5






,

(1.11)

where the curly braces list equally plausible values. Since each of A

and B have three possibilities, their sum has nine possibilities includ-

ing duplicates. Here are the possibles sums and their probabilities,

assuming that the errors in A and B are uncorrelated:

log10 N 9 9.5 10 10.5 11

p
1

9

2

9

3

9

2

9

1

9
(1.12)

Compare this distribution to the one-shot distribution (1.10). This

distribution, which results from breaking the estimate into two parts,

is more likely to produce a log10 N close to 10. In other words, break-

ing the estimate into two parts reduces the expected error, because

the errors in the parts have a chance to cancel.

Generalizing this example, we break N into k roughly equal parts;

the example used k = 2. The estimate of each part is then in error by

a factor of γ = 101/k. If these errors are uncorrelated, their logarithms

combine as steps in a random walk. So the error in log10 N arises from

a random walk of k steps, each with step size log10 γ = 1/k. In such

a random walk, the expected root-mean-squared distance from the

origin is

xrms = (number of steps)1/2 × step size, (1.13)

which is

xrms = k1/2 × 1

k
= k−1/2. (1.14)

This distance from the origin is the typical error in the logarithm of

N . By increasing k, you decrease this distance and therefore decrease

the error in N . The moral is: Divide and conquer!
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Pasadena

A ∼ 100 km2

10 km

10 km

a ∼ (50 m)2

Figure 1.2. Map of Pasadena, Cali-
fornia drawn to order of magnitude.

The small shaded box is the area gov-

erned by one lamp; the box is not drawn

to scale, because if it were, it would be

only a few pixels wide. How many such

boxes can we fit into the big square? It

takes 10min to leave Pasadena by car,

so Pasadena has area A ∼ (10 km)2 =

108 m2. While driving, we pass a lamp

every 3 sec, so we estimate that there’s

a lamp every 50m; each lamp covers an
area a ∼ (50 m)2.

1.2 Cost of lighting Pasadena, California

What is the annual cost of lighting the streets of Pasadena, California?

Astronomers would like this cost to be huge, so that they could

argue that street lights should be turned off at night, the better to

gaze at heavenly bodies. As in Section 1.1, we guess a cost right away,

to train our intuition. So let’s guess that lighting costs $1 million

annually. This number is unreliable; by talking to our gut, we find that

$100,000 sounds okay too, as does $10 million (although $100 million

sounds too high).

The cost is a large number, out of the ordinary range of costs, so it

is difficult to estimate in one step (we just tried to guess it, and we’re

not sure within a factor of 10 what value is correct). So we divide and

conquer. First, we estimate the number of lamps; then, we estimate

how much it costs to light each lamp.

To estimate the number of lamps (another large, hard-to-guess

number), we again divide and conquer: We estimate the area of Pasa-

dena, and divide it by the area that each lamp governs, as shown in

Figure 1.2. There is one more factor to consider: the fraction of the

land that is lighted (we call this fraction f). In the desert, f is perhaps

0.01; in a typical city, such as Pasadena, f is closer to 1.0 (all land is

lighted). We first assume that f = 1.0 to get an initial estimate; then

we estimate f and correct the cost accordingly.

We now estimate the area of Pasadena. What is its shape? We

could look at a map, but, as lazy armchair theorists, we lie; we assume

that Pasadena is a square. It takes, say, 10 minutes to leave Pasadena

by car, perhaps traveling at 1 km/min; Pasadena is roughly 10 km in

length. Therefore, Pasadena has area A ∼ 10 km×10 km = 100 km2 =

108 m2. (The true area is 23mi2, or 60 km2.) How much area does each

lamp govern? In a car—say, at 1 km/min or ∼ 20m s−1—it takes 2

or 3 sec to go from lamppost to lamppost, corresponding to a spacing

of ∼ 50m. Therefore, a ∼ (50m)2 ∼ 2.5 · 103 m2, and the number of

lights is N ∼ A/a ∼ 108 m2/2.5 ·103 m2 ∼ 4 ·104.

How much does each lamp cost to operate? We estimate the cost

by estimating the energy that they consume in a year and the price per

unit of energy (divide and conquer). Energy is power× time. We can
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1. Wetting your feet 10

Figure 1.3. Fraction of Pasadena that

is lighted. The streets (thick lines) are

spaced d ∼ 100m apart. Each lamp,

spaced 50m apart, lights a 50m × 50m

area (the eight small, unshaded squares).

The only area not lighted is in the center

of the block (shaded square); it is one-

fourth of the area of the block. So, if
every street has lights, f = 0.75.

estimate power reasonably accurately, because we are familiar with

lamps around the home. To estimate a quantity, try to compare it to

a related, familiar one. Street lamps shine brighter than a household

100W bulb, but they are probably more efficient as well, so we guess

that each lamp draws p ∼ 300W. All N lamps consume P ∼ Np ∼
4 · 104 × 300W ∼ 1.2 · 104 kW. Let’s say that the lights are on at

night—8 hours per day—or 3000 hours/year. Then, they consume 4 ·
107 kW–hour. An electric bill will tell you that electricity costs $0.08

per kW–hour (if you live in Pasadena), so the annual cost for all the

lamps is $3 million.

Now let’s improve this result by estimating the fraction f . What

features of Pasadena determine the value of f? To answer this ques-

tion, consider two extreme cases: the desert and New York City. In the

desert, f is small, because the streets are widely separated, and many

streets have no lights. In New York city, f is high, because the streets

are densely packed, and most streets are filled with street lights. So

the relevant factors are the spacing between streets (which we call

d), and the fraction of streets that are lighted (which we call fl). As

all pedestrians in New York city know, 10 north–south blocks or 20

east–west blocks make 1 mile (or 1600m); so d ∼ 100m. In street

layout, Pasadena is closer to New York city than to the desert. So

we use d ∼ 100m for Pasadena as well. If every street were lighted,

what fraction of Pasadena would be lighted? Figure 1.3 shows the

computation; the result is f ∼ 0.75. In New York City fL ∼ 1; in

Pasadena fL ∼ 0.3 is more appropriate. So f ∼ 0.75 × 0.3 ∼ 0.25.

Our estimate for the annual cost is then $1 million. Our initial guess

is unexpectedly accurate.

As you practice such estimations, you will be able to write them

down compactly, converting units stepwise until you get to your goal

(here, $/year). The cost is

cost ∼ 100 km2

︸ ︷︷ ︸

A

×106 m2

1 km2
× 1 lamp

2.5 ·103 m2

︸ ︷︷ ︸

a

× 8 hrs

1 day
︸ ︷︷ ︸

night

× 365 days

1 year
× $0.08

1 kW–hour
︸ ︷︷ ︸

price

×0.3 kW × 0.25

∼ $1 million.

(1.15)

It is instructive to do the arithmetic without using a calculator. Just

as driving to the neighbors’ house atrophies your muscles, using cal-

culators for simple arithmetic dulls your mind. You do not develop

an innate sense of how large quantities should be, or of when you

have made a mistake; you learn only how to punch keys. If you need

an answer with 6-digit precision, use a calculator; that’s the task for

which they are suited. In order-of-magnitude estimates, 1- or 2-digit

2006-03-20 23:51:19 [rev 22987c8b4860]



1. Wetting your feet 11

precision is sufficient; you can easily perform these low-precision cal-

culations mentally.

Will Pasadena astronomers rejoice because this cost is large? A

cost has units (here, dollars), so we must compare it to another, rele-

vant cost. In this case, that cost is the budget of Pasadena. If lighting

is a significant fraction of the budget, then can we say that the lighting

cost is large.

1.3 Pasadena’s budget

What fraction of Pasadena’s budget is alloted to street lighting?

We just estimated the cost of lighting; now we need to estimate

Pasadena’s budget. First, however, we make the initial guess. It would

be ridiculous if such a trivial service as street lighting consumed as

much as 10 percent of the city’s budget. The city still has road con-

struction, police, city hall, and schools to support. 1 percent is a more

reasonable guess. The budget should be roughly $100 million.

Now that we’ve guessed the budget, how can we estimate it? The

budget is the amount spent. This money must come from somewhere

(or, at least, most of it must): Even the us government is moder-

ately subject to the rule that income ≈ spending. So we can estimate

spending by estimating income. Most us cities and towns bring in

income from property taxes. We estimate the city’s income by esti-

mating the property tax per person, and multiplying the tax by the

city’s population.

Each person pays property taxes either directly (if she owns land)

or indirectly (if she rents from someone who does own land). A typi-

cal monthly rent per person (for a two-person apartment) is $500 in

Pasadena (the apartments-for-rent section of a local newspaper will

tell you the rent in your area), or $6000 per year. (Places with fine

weather and less smog, such as the San Francisco area, have higher

monthly rents, roughly $1500 per person.) According to occasional

articles that appear in newspapers when rent skyrockets and interest

in the subject increases, roughly 20 percent of rent goes toward land-

lords’ property taxes. We therefore estimate that $1000 is the annual

property tax per person.

Pasadena has roughly 2 · 105 people, as stated on the road signs

that grace the entries to Pasadena. So the annual tax collected is

$200 million. If we add federal subsidies to the budget, the total bud-

get is probably double that, or $400 million. A rule of thumb in these

financial calculations is to double any estimate that you make, to cor-

rect for costs or revenues that you forgot to include – such as county

taxes, rental of city property, local sales taxes (value-added taxes),

and so on. This rule of thumb is not infallible. We can check its va-

lidity in this case by estimating the federal contribution. The federal

budget is roughly $2 trillion, or $6000 for every person in the United

States (any recent almanac tells us the federal budget and the us

2006-03-20 23:51:19 [rev 22987c8b4860]



1. Wetting your feet 12

population). One-half of the $6000 funds defense spending and in-

terest on the national debt; it would be surprising if fully one-half

of the remaining $3000 went to the cities. Perhaps $1000 per person

goes to cities, which is roughly the amount that the city collects from

property taxes. Our doubling rule is accurate in this case.

For practice, we cross-check the local-tax estimate of $200 mil-

lion, by estimating the total land value in Pasadena, and guessing

the tax rate. The area of Pasadena is 100 km2 ∼ 36mi2, and 1mi2 =

640 acres. You can look up this acre–square-mile conversion, or re-

member that, under the Homestead Act, the us government handed

out land in 160-acre parcels—known as quarter lots because they were

0.25mi2. Land prices are exorbitant in southern California (sun, sand,

surf, and mountains, all within a few hours drive); the cost is roughly

$1 million per acre (as you can determine by looking at the homes-

for-sale section of the newspaper). We guess that property tax is 1

percent of property value. You can determine a more accurate value

by asking anyone who owns a home, or by asking City Hall. The total

tax is

W ∼ 36mi2

︸ ︷︷ ︸

area

×640 acres

1mi2
× $1 million

1 acre
︸ ︷︷ ︸

land price

× 0.01
︸︷︷︸

tax

∼ $200 million.

(1.16)

This revenue is identical to our previous estimate of local revenue;

the equality increases our confidence in the estimates. As a check on

our estimate, we looked up the budget of Pasadena. In 1990, it was

$350 million; this value is much closer to our estimate of $400 million

than we have a right to expect!

The cost of lighting, calculated in Section 1.2, consumes only 0.2

percent of the city’s budget. Astronomers should not wait for Pasa-

dena to turn out the lights.

1.4 Diaper production

How many disposable diapers are manufactured in the United States

every year?

We begin with a guess. The number must be in the millions—say,

10 million—because of the huge outcry when environmentalists sug-

gested banning disposable diapers to conserve landfill space and to

reduce disposed plastic. To estimate such a large number, we divide

and conquer. We estimate the number of diaper users—babies, as-

suming that all babies use diapers, and that no one else does—and

the number of diapers that each baby uses in 1 year. These assump-

tions are not particularly accurate, but they provide a start for our

estimation. How many babies are there? We hereby define a baby as a

child under 2 years of age. What fraction of the population are babies?

To estimate this fraction, we begin by assuming that everyone lives
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Area ∼ 2

70
× 3 · 108 ∼ 107

Order-of-magnitude age distribution

2 70
0

4

True age distribution

Age (years)

People (106)

Figure 1.4. Number of people versus age

(in the United States). The true age dis-

tribution is irregular and messy; without

looking it up, we cannot know the area

between ages 0.0 years and 2.0 years
(to estimate the number of babies). The

rectangular graph—which has the same

area and similar width—immediately

makes clear what the fraction under

2 years is: It is roughly 2/70 ∼ 0.03.

The population of the United States is

roughly 3 ·108, so the number of babies is

∼ 0.03 × 3 ·108
∼ 107.

exactly 70 years—roughly the life expectancy in the United States—

and then abruptly dies. (The life expectancy is more like 77 years,

but an error of 10 percent is not significant given the inaccuracies in

the remaining estimates.)

How could we have figured out the average age, if we did not al-

ready know it? In the United States, government retirement (Social

Security) benefits begin at age 65 years, the canonical retirement age.

If the life expectancy were less than 65 years—say, 55 years—then

so many people would complain about being short-changed by Social

Security that the system would probably be changed. If the life ex-

pectancy were much longer than 65 years—say, if it were 90 years—

then Social Security would cost much more: It would have to pay

retirement benefits for 90− 65 = 25 years instead of for 75− 65 = 10

years, a factor of 2.5 increase. It would have gone bankrupt long ago.

So, the life expectancy must be around 70 or 80 years; if it becomes

significantly longer, expect to see the retirement age increased accord-

ingly. For definiteness, we choose one value: 70 years. Even if 80 years

is a more accurate estimate, we would be making an error of only 15

percent, which is probably smaller than the error that we made in

guessing the cutoff age for diaper use. It would hardly improve the

accuracy of the final estimate to agonize over this 15 percent.

To compute how people are between the ages of 0 and 2.0 years,

consider an analogous problem. In a 4-year university (which gradu-

ates everyone in 4 years and accepts no transfer students) with 1000

students, how many students graduate in each year’s class? The an-

swer is 250, because 1000/4 = 250. We can translate this argument

into the following mathematics. Let τ be lifetime of a person. We

assume that the population is steady: The birth and death rates are

equal. Let the rates be Ṅ . Then the total population is N = Ṅτ , and
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the population between ages τ1 and τ2 is

N
τ2 − τ1

τ
= Ṅ(τ2 − τ1). (1.17)

So, if everyone lives for 70 years exactly, then the fraction of the

population whose age is between 0 and 2 years is 2/70 or ∼ 0.03

(Figure 1.4). There are roughly 3·108 people in the United States, so

Nbabies ∼ 3 ·108 × 0.03 ∼ 107 babies. (1.18)

We have just seen another example of skillful lying. The jagged curve

in Figure 1.4 shows a cartoon version of the actual mortality curve for

the United States. We simplified this curve into the boxcar shape (the

rectangle), because we know how to deal with rectangles. Instead of

integrating the complex, jagged curve, we integrate a simple, civilized

curve: a rectangle of the same area and similar width. This proce-

dure is order-of-magnitude integration. Similarly, when we stud-

ied the Brinks armored-car example (Section 1.1), we pretended that

the cargo space was a cube; that procedure was order-of-magnitude

geometry.

How many diapers does each baby use per year? This number is

large—maybe 100, maybe 10,000—so a wild guess is not likely to be

accurate. We divide and conquer, dividing 1 year into 365 days. Sup-

pose that each baby uses 8 diapers per day; newborns use many more,

and older toddlers use less; our estimate is a reasonable compromise.

Then, the annual use per baby is ∼ 3000, and all 107 babies use 3·1010

diapers. The actual number manufactured is 1.6·1010 per year, so our

initial guess is low, and our systematic estimate is high.

This example also illustrates how to deal with flows: People move

from one age to the next, leaving the flow (dying) at different ages,

on average at age 70 years. From that knowledge alone, it is diffi-

cult to estimate the number of children under age 2 years; only an

actuarial table would give us precise information. Instead, we invent

a table that makes the calculation simple: Everyone lives to the life

expectancy, and then dies abruptly. The calculation is simple, and

the approximation is at least as accurate as the approximation that

every child uses diapers for exactly 2 years. In a product, the error is

dominated by the most uncertain factor; you waste your time if you

make the other factors more accurate than the most uncertain factor.

1.5 Meteorite impacts

How many large meteorites hit the earth each year?

This question is not yet clearly defined: What does large mean?

When you explore a new field, you often have to estimate such ill-

defined quantities. The real world is messy. You have to constrain

the question before you can answer it. After you answer it, even with
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Reported meteor impact
a ∼ 10 m2

Earth’s surface
A ∼ 5 ·1014 m2

Locations where impact would
be reported, N ∼ 109

Figure 1.5. Large-meteorite impacts on

the surface of the earth. Over the sur-

face of the earth, represented as a circle,

every year one meteorite impact (black

square) causes sufficient damage to be

reported by Sky&Telescope. The gray

squares are areas where such a meteorite

impact would have been reported—for
example, a house or car in an indus-

trial country; they have total area Na ∼

1010 m2. The gray squares cover only

a small fraction of the earth’s surface.

The expected number of large impacts

over the whole earth is 1×A/Na ∼ 5·104,

where A ∼ 5 ·1014 m2 is the surface area

of the earth.

crude approximations, you will understand the domain more clearly,

will know which constraints were useful, and will know how to im-

prove them. If your candidate set of assumptions produce a wildly

inaccurate estimate—say, one that is off by a factor of 100,000—then

you can be sure that your assumptions contain a fundamental flaw.

Solving such an inaccurate model exactly is a waste of your time.

An order-of-magnitude analysis can prevent this waste, saving you

time to create more realistic models. After you are satisfied with your

assumptions, you can invest the effort to refine your model.

Sky&Telescope magazine reports approximately one meteorite im-

pact per year. However, we cannot simply conclude that only one

large meteorite falls each year, because Sky&Telescope presumably

does not report meteorites that land in the ocean or in the middle

of corn fields. We must adjust this figure upward, by a factor that

accounts for the cross-section (effective area) that Sky&Telescope re-

ports cover (Figure 1.5). Most of the reports cite impacts on large,

expensive property such as cars or houses, and are from industrial

countries, which have N ∼ 109 people. How much target area does

each person’s car and living space occupy? Her car may occupy 4m2,

and her living space (portion of a house or apartment) may occupy

10m2. [A country dweller living in a ranch house presents a larger tar-

get than 10m2, perhaps 30m2. A city dweller living in an apartment

presents a smaller target than 10m2, as you can understand from

the following argument. Assume that a meteorite that lands in a city

crashes through 10 stories. The target area is the area of the building

roof, which is one-tenth the total apartment area in the building. In

a city, perhaps 50m2 is a typical area for a two-person apartment,

and 3m2 is a typical target area per person. Our estimate of 10m2 is

a compromise between the rural value of 30m2 and the city value of

3m2.]

Because each person presents a target area of a ∼ 10m2, the total

area covered by the reports is Na ∼ 1010 m2. The surface area of the

earth is A ∼ 4π×(6·106 m)2 ∼ 5·1014 m2, so the reports of one impact

per year cover a fraction Na/A ∼ 2 · 10−5 of the earth’s surface. We

multiply our initial estimate of impacts by the reciprocal, A/Na, and

estimate 5 · 104 large-meteorite impacts per year. In the solution, we
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defined large implicitly, by the criteria that Sky & Telescope use.

1.6 What you have learned

You now know a basic repertoire of order-of-magnitude techniques:

Divide and conquer: Split a complicated problem into manageable

chunks, especially when you must deal with tiny or huge numbers,

or when a formula naturally factors into parts (such as V ∼ l ×
w × h).

Guess: Make a guess before solving a problem. The guess may

suggest a method of attack. For example, if the guess results in a

tiny or huge number, consider using divide and conquer. The guess

may provide a rough estimate; then you can remember the final

estimate as a correction to the guess. Furthermore, guessing—and

checking and modifying your guess—improves your intuition and

guesses for future problems.

Talk to your gut: When you make a guess, ask your gut how it feels.

Is it too high? Too low? If the guess is both, then it’s probably

reliable.

Lie skillfully: Simplify a complicated situation by assuming what

you need to know to solve it. For example, when you do not know

what shape an object has, assume that it is a sphere or a cube.

Cross-check: Solve a problem in more than one way, to check

whether your answers correspond.

Use guerrilla warfare: Dredge up related facts to help you make

an estimate.

Punt: If you’re worried about a physical effect, do not worry about

it in your first attempt at a solution. The productive strategy is

to start estimating, to explore the problem, and then to handle

the exceptions once you understand the domain.

Be an optimist: This method is related to punt. If an assumption

allows a solution, make it, and worry about the damage afterward.

Lower your standards: If you cannot solve the entire problem as

asked, solve those parts of it that you can, because the subproblem

might still be interesting. Solving the subproblem also clarifies

what you need to know to solve the original problem.

Use symbols: Even if you do not know a certain value—for exam-

ple, the energy density stored in muscle—define a symbol for it.

The symbol may cancel later in the solution to the problem. If it

does not cancel, and the problem is still too complex, lower your

standards. By solving a simpler problem, you begin to understand

the area, From that understanding, you may learn enough to solve

the original problem.

We apply these techniques, and introduce a few more, in the chapters

to come. With a little knowledge and a repertoire of techniques, you
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can estimate quantities that occur in fluid dynamics, biophysics, and

many other areas.

1.7 Exercises

◮ 1.1 Rewriting

Estimate the radius of the earth. Prove that the earth is (a) huge and

(b) tiny, by choosing appropriate units for the radius.

◮ 1.2 Batteries

What is the cost of energy from a 9V battery? From a wall socket

(the mains)?

◮ 1.3 Human warmth

How much heat do you generate just sitting around?

◮ 1.4 Fuel economy

What is the fuel consumption, in passenger–miles per gallon, of a 747

jumbo jet?

◮ 1.5 Bandwidth

What is the data rate (bits/s) of a 747 filled with DVD’s crossing the

Atlantic?

◮ 1.6 Pit spacing

What is the spacing of the pits on a CD-ROM disc? Extra: Test your

estimate with a simple experiment.
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2 Some financial math

This chapter, a portion of a longer draft, discusses growth rates and

mortgages.

2.1 Rule of 72

If the world population grows at 1% annually, how long until the

population doubles? Answer: 72 years. If inflation is 3% annually,

how long before the $1000 under your mattress is worth only $250

in today’s dollars? Answer: 48 years. Such problems, where a quick

back-of-the-envelope answer is doable mentally, are amenable to the

rule of 72:

If a quantity grows at q% annually, then it doubles in 72/q years.

Before we justify this rule, let’s apply it to the two preceding exam-

ples. In the world-population example, q = 1 so the doubling time

is 72 years. In the mattress-money example, the money has fallen in

worth from $1000 to $250, so prices have quadrupled. With annual

inflation being 3%, prices double in 72/3 = 24 years. Quadrupling

requires two doublings, so the fall to $250 takes 2 × 24 = 48 years.

The rule arises as follows. Let r be the fractional growth in one

period. In the inflation example, the period is one year and r = 3%

or 0.03. After n periods, the quantity has grown by a factor

f = (1 + r)n. (2.1)

Take the natural logarithm of both sides:

ln f = n ln(1 + r). (2.2)

As long as r ≪ 1, you can approximate the right side: ln(1 + r) ≈ r.

So

ln f ≈ nr. (2.3)

Doubling means f = 2, so the number of periods is given by

n ≈ ln 2

r
=

0.69

r
. (2.4)

You can express r as a percentage instead of as a fraction: as q% where

q = 100r. Then the number of periods required for the quantity to

double is:

n ≈ 69

q
. (2.5)
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The doubling time is n periods:

t ≈ 69 . . .

q
× one period. (2.6)

For the inflation example, the period is one year and r = 0.03,

so the denominator becomes 3% and t = 23 years. However, the first

analysis of this example used 24 years as doubling time. The discrep-

ancy is in the 69 versus 72. The more exact rule is the ‘rule of 69’ of

(2.6). The problem is that 69 has very few factors: only 3 and 23. On

the other hand, 72 has a zillion factors: 2, 3, 4, 6, 8, 12, 18, 24, and

36. For most percentage growth rates, the mental divisions are easier

if you use 72 rather than 69.

The requirement for r ≪ 1 means that the quantity does not grow

appreciably in one period. In Weimar Germany, inflation was so severe

that shoppers brought baskets filled with (paper) money to pay for

their groceries. Others, it is said, stole the baskets rather than the

money – because baskets were worth more than the money. Or, and

this story is probably apocryphal: A taxi journey cost less than a bus

journey, because you paid the bus fare at the beginning of the trip,

whereas you paid the taxi fare at the end of the trip, by which time

the money had sufficiently inflated to make it cheaper than the bus

far. Except for such special circumstances, the approximation r ≪ 1

is usually accurate.

2.2 Mortgages: A first approximation

Mortgage calculations provide an example of interpreting and simpli-

fying mathematical expressions. A fixed-rate mortgage is the standard

mortgage in the United States. In many countries (the United King-

dom and South Africa, for example), the standard is a variable-rate

mortgage. For this exposition, fixed-rate mortgages have a large ad-

vantage: They are deterministic and therefore easier to analyze.

Here’s how they work. The bank lends you, say, $180,000 to buy a

house (or, in Manhattan, a closet). You pay it back in equal monthly

payments for 30 years. As a first guess, you’d pay $500 every month for

a total of $180,000. The bank, however, will not like this arrangement.

It gets all its money back but only after a long time. Instead of lending

it to you, it could have invested the money – even in a savings account

at another bank – and made more money. In other words, it would

rather have money now than later. And so would you, which is why

you are asking the bank for money to buy a house. Hence the bank

charges you interest to account for the increased value of money

now compared to later. A typical interest rate might be quoted at

6%. That value has no notion of time, whereas we are looking for a

quantity that specifies the rate at which money declines in value. But

all is well: The 6% shorthand means 6% per year.

So, you could hold on to the money for 30 years and include in-

terest when you pay it back. For the bank to be happy, they would
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want the money that you give them, after discounting its value, to

equal the loan amount of $180,000. You would then make a payment,

in 30 years, of

Pfinal = (1 + rτ)nP, (2.7)

where τ is the compounding period, r is the interest rate, and n is

the number of periods in the term of the loan. When rτ ≪ 1, you can

approximate the factor

f = (1 + rτ)n (2.8)

by taking the logarithm of both sides, the same method that led to

(2.3). Then

ln f = n ln(1 + rτ)
︸ ︷︷ ︸

≈ rτ

≈ rτn, (2.9)

so

(1 + rτ)n ≈ erτn. (2.10)

The repayment (2.7) becomes

Pfinal ≈ Perτn. (2.11)

For the hypothetical loan above, n = 360, τ = 1 month, and

r = 0.005/month (from 0.06/year). Equivalently, and this version

makes the mental calculations easier, you can consider τ = 1 year and

use r = 0.06/year. Either way, rτn = 1.8. So you make a payment of

roughly e1.8P or 6P . If you spread this payment over 30 years, the

payments are:

total payment

loan term
=

(1 + rτ)nP

nτ
= $3000month−1. (2.12)

The first approach (pay back P after 30 years) cheats the bank,

whereas this refiguring cheats you. Your calculation of present value

already accounts for the declining value of money, so why should you

return the money before 30 years? In other words, if you make more

than one payment, you should pay less than $3000/month. How much

less depends on how many payments you make.

So the true monthly payment will be between $500 and $3000. To

make a rough estimate, compute the geometric mean of these upper

and lower bounds; we choose the geometric mean rather than the

normal (arithmetic) mean for the reasons discussed on page 4. The

geometric mean of 500 and 3000 is
√

500 × 3000 = 1000 ×
√

1.5 = 1225. (2.13)

This estimate for the monthly payment, $1225, is close to the true

value of $1079.19/month. So the geometric-mean estimate is rea-

sonably accurate, more accurate than we have a right to expect. In

Section 2.5 we show you a more principled and even more accurate

method.
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2.3 Realistic mortgages

The previous estimates, except for the geometric-mean estimate, as-

sumed that you return the money in one lump. Let’s consider the

opposite, more realistic limit: You make many smaller payments. In

other words, the number of periods n is large. Then how much is the

payment amount? You get the principal at t = 0 and make the first

payment at t = τ , the second payment at t = 2τ and so on. To find

the payment amount p, add the present values of each payment and

set the total present value equal to the principal. With those values

equal, you and the bank are making an equal trade: You get money

now, and they get a steady stream of payments with the same present

value as the lump sum that they gave you.

The payment at t = τ has present value

payment

discount factor
=

p

1 + rτ
, (2.14)

and the kth payment, at t = kτ , has present value

p

(1 + rτ)k
. (2.15)

As long as rτ ≪ 1, we can approximate (1 + rτ)k by ekrτ . So pay-

ment k has present value pe−krτ and the total present value of the n

payments, which is also the principal P , is:

P =
n∑

1

pe−krτ = p
n∑

1

e−krτ . (2.16)

Let’s approximate this sum. The first approximation, which makes

only a small error when n is large, is to pretend that the payments

start at t = 0 rather than at t = τ , thereby reducing the lower limit

from 1 to 0:

P = p

n∑

0

e−krτ . (2.17)

The second approximation, also accurate when n is large, is to change

the sum into an integral:

P = p

∫ n

0

e−krτ dk

=
p

rτ

(
1 − e−nrτ

)
.

(2.18)

The factor nτ is the loan term, which we will call T . With this nota-

tion, the payment is

p =
Prτ

1 − e−rT
. (2.19)

This formula is at least plausible. The numerator Prτ is the inter-

est in the first period before any principal has been returned. The
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denominator then corrects this payment because you also return the

principal. As you return principal, the portion of p devoted to interest

falls, and the portion devoted to principal rises – keeping their sum

constant (and equal to p).

The dimensionless parameter here is rT , the factor in the expo-

nent. The existence of a dimensionless parameter suggests the next

step, which is to examine the formula in two limits: rT → 0 and

rT → ∞.

2.4 Short-term limit

We first look at the limit rT → 0. Roughly speaking, this limit de-

scribes a short-term loan or a low-interest loan. Speaking more pre-

cisely, the important value is not r or T itself – for they have di-

mensions and therefore no intrinsic scale – but their dimensionless

product rT . In this limit, e−rT ≈ 1 and

p =
Prτ

1 − 1
→ ∞. (2.20)

We’ve approximated too boldly! The next-best approximation for

e−rT is e−rT ≈ 1 − rT . Then the payment (2.19) is

p =
Prτ

rT
= P

τ

T
=

P

n
. (2.21)

So you pay back the principal in n equal installments, each of size P/n:

You are not paying interest! Those glad tidings are not surprising,

since this calculation assumed that rT ≈ 0, which is the dimensionally

correct way of saying ‘negligible interest’. This conclusion, while more

informative than the infinite payment (2.20), is not news but it is a

useful first approximation.

For the next approximation, take the approximation for e−rT one

more step:

e−rT ≈ 1 − rT +
(rT )2

2
+ · · · . (2.22)

Then the payment (2.19) becomes

p =
Prτ

rT − (rT )2/2
=

Prτ

rT

1

1 − rT/2
. (2.23)

The first factor is the previous approximation P/n from (2.21). The

second factor, since rT ≪ 1, is approximately 1 + rT/2. So the pay-

ment is

p =
P

n

(

1 +
rT

2

)

=
P

n
+

1

2
Prτ. (2.24)

This result has been called the ‘Persian folk method of figuring inter-

est’ [1].

Its main term is P/n, the principal repaid per period on a zero-

interest loan. The correction term Prτ/2 also has an intuitive expla-

nation. The main factor Prτ is the interest accumulated during the
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first period, before any principal has been returned. So the correc-

tion term somehow accounts for a non-zero interest rate. Its factor of

one-half arises because the outstanding principal is dwindling from

P to 0, so on average you should pay less than Prτ in interest each

period. The following argument show how much less. In the first ap-

proximation, the interest rate is zero, so the payment is P/n and goes

all toward principal. Thus the outstanding principal declines linearly

from P to 0. The average of the outstanding principal, over the term

of the loan, is the (arithmetic!) mean of 0 and P , or P/2.

Having this information enables the next approximation, where

interest rate is slightly greater than zero. Now you need to pay inter-

est on the outstanding principal. The average outstanding principal is

hardly affected by the tiny interest rate, since most of the payment is

still toward principal. So the interest will be charged on P/2, the av-

erage outstanding principal in the first approximation. In one period,

this interest is Prτ/2, which is the correction term in (2.24). One of

the exercises (which one?) contains an example using this formula.

2.5 Long-term limit

Now for the other limit: the term is long or rT ≫ 1. Then the usual

exponential factor e−rT is nearly zero. If we assume that it is ex-

actly zero, perhaps an overeager approximation, then the payment

expression (2.19) simplifies to:

p =
Prτ

1 − e−rT
≈ Prτ. (2.25)

The quantity Prτ is the interest in one period before the principal

P falls. Since the payment exactly covers the interest, with nothing

left over to reduce the outstanding principal, the payment remains

constant and equal to the interest: The loan is an interest-only loan.

Such a loan is also called an annuity. In this case you sold the bank an

annuity: It paid you a lump sum, the principal, and receives forever

a stream of payments.

Many house mortgages fall toward this limit. Here are typical

terms: United States, 30 years; South Africa, 25 years; England, 25

years. Typical rates might be 6% fixed (US in 2005) to 13% variable

(South Africa in 2004). For the typical American mortgage,

rT =
6%

year
× 30 years = 1.8, (2.26)

which, although larger than 1, is not much larger. So we have to

improve the approximation e−rT = 0 that led to the interest-only

repayment schedule (2.25). The next improvement is:

p =
Prτ

1 − e−rT
≈ Prτ

(
1 + e−rT

)
, (2.27)
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where the last step uses the binomial approximation to (1 − x)−1 for

x ≪ 1.

This approximation increases the interest-only estimate of Prτ by

the small fraction e−rT . For the mortgage in (2.26), the parameter rT

is 1.8 and erT ≈ 6. So, relative to an annuity, the payment increases

by e−rT or by one-sixth. For the loan used before, with P = $180, 000,

the monthly interest is, with τ = 1month:

Prτ = $180, 000 × 6%

year
× 1 year

12
. (2.28)

The years upstairs and downstairs cancel, and the 6 and 12 combine

to make a gentle fraction:

Prτ = $180, 000 × 6

12
× 1%

= $180, 000 × 1

2
× 1

100

= $900.

(2.29)

This example shows that 6% (like 12%) is an easy rate for which to

figure monthly interest mentally. So if you have another rate, such as

9%, an easy way to calculate mentally is to pretend that the monthly

interest at 6%, then adjust your answer (for 9% you would multiply

it by 1.5). The monthly interest (2.29) needs to be adjusted upwards

slightly to include repaying the principal. The correction factor in

(2.27) is roughly 1 + 1/6, so the payment becomes

p = $900 ×
(
1 +

1

6

)
= $1050. (2.30)

The correct value is $1079.19, so this estimate is quite accurate, sig-

nificantly more accurate than the geometric-mean estimate of $1225.

2.6 What you have learned

You now know a basic repertoire of approximations for growth rates

and loans.

Rule of 72: If a quantity grows at q% annually, then it doubles in

72/q years.

Short-term loans: In a short-term loan, most of the payment goes

toward principal. If all of it went toward the principal, originally

P , then you would pay P/n each period, where n is the number of

periods. In the next approximation, you include interest of Prτ/2

in the payment. The Prτ is the interest if you never repay prin-

cipal, and the factor of one-half accounts for the (nearly) linearly

declining principal.

Long-term loans: In a long-term loan, the opposite limit, most of

the initial payment goes toward interest. If all of it went toward
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interest, then the principal would never decline, and you would pay

forever. In that situation, you would have sold the bank an annuity.

In the next approximation – for a finite but long loan term – you

increase the interest-only payment by the fraction e−rT , where r

is the rate and T is the loan term.

2.7 Exercises

◮ 2.1 Credit cards

American credit cards often promise a rate such as r = 4% for the

‘life of the loan’, but set a repayment term of T = 5yr. Estimate the

monthly payment on a loan of $12000, if possible mentally.

◮ 2.2 House mortgage

Estimate the monthly payments for a 25-year fixed-rate mortgage at

9% interest, where P = $120000.
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